मराठी

Show that the lines x-12=y-23=z-34 and x-45=y-12 = z intersect.. Also, find their point of intersection. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.

बेरीज

उत्तर

We have lines,

`L_1 : (x - 1)/2 = (y - 2)/3 = (z - 3)/4 = lambda`

And `L_2 : (x - 4)/5 = (y - 1)/2 = z = mu`

Any point on the line L1 is (`2lambda + 1, 3lambda + 2, 4lambda + 3)`

Any point on the line L2 is `(5mu + 4, 2mu + 1, mu)`

If line intersect then there exists a value of λ, μ for which

`(2lambda + 1, 3lambda + 2, 4lambda + 3) = (5mu + 4, 2mu + 1, mu)`

⇒ `2lambda + 1 = 5mu + 4, 3 lambda + 2 = 2mu + 1` and `4lambda + 3 = mu`

Solving fisrt two equations we get `lambda = - 1, mu = -1`

These values of `lambda = - 1, mu = - 1` also satisfy the third equation.

Thus lines interest.

Also the point of intersection is `(-1, -1, -1)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Exercise | Q 3 | पृष्ठ २३५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A point is in the XZ-plane. What can you say about its y-coordinate?


The coordinates of points in the XY-plane are of the form _______.


Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).


A point R with x-coordinate 4 lies on the line segment joining the pointsP (2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by `((8k + 2)/(k+1), (-3)/(k+1), (10k + 4)/(k+1))`


If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant.


Find the coordinates of the points which tisect the line segment joining the points P(4, 2, –6) and Q(10, –16, 6). 


Using section formula, show that he points A(2, –3, 4), B(–1, 2, 1) and C(0, 1/3, 2) are collinear.

 


Given that  P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR


Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, –8) is divided by the yz-plane. 


Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c). 


Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).


If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


The equations of x-axis in space are ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.


Find the vector equation of the line which is parallel to the vector `3hati - 2hatj + 6hatk` and which passes through the point (1 ,–2, 3).


`vec(AB) = 3hati - hatj + hatk` and `vec(CD) = - 3hati + 2hatj + 4hatk` are two vectors. The position vectors of the points A and C are `6hati + 7hatj + 4hatk` and `-9hatj + 2hatk`, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that `vec(PQ)` is perpendicular to `vec(AB)` and `vec(CD)` both.


The reflection of the point (α, β, γ) in the xy-plane is ______.


A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


The equation of a line, which is parallel to `2hati + hatj + 3hatk` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×