मराठी

Determine the Point on Yz-plane Which is Equidistant from Points A(2, 0, 3), B(0, 3,2) and C(0, 0,1). - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).

उत्तर

The coordiante of x point on yz-plane is 0
Let the point be P(0, y, z).
Now, PA = PB 

\[\sqrt{\left( 2 - 0 \right)^2 + \left( 0 - y \right)^2 + \left( 3 - z \right)^2} = \sqrt{\left( 0 - 0 \right)^2 + \left( 3 - y \right)^2 + \left( 2 - z \right)}\]
\[ \Rightarrow 4 + y^2 + 9 - 6z + z^2 = 9 - 6y + y^2 + 4 - 4z + z^2 \]
\[ \Rightarrow - 6z = - 6y - 4z\]
\[ \Rightarrow 3y - z = 0 . . . . . \left( 1 \right)\]

Also, PA = PC

\[\sqrt{\left( 2 - 0 \right)^2 + \left( 0 - y \right)^2 + \left( 3 - z \right)^2} = \sqrt{\left( 0 - 0 \right)^2 + \left( 0 - y \right)^2 + \left( 1 - z \right)^2}\]
\[ \Rightarrow 4 + y^2 + 9 - 6z + z^2 = y^2 + 1 - 2z + z^2 \]
\[ \Rightarrow 13 - 6z = 1 - 2z\]
\[ \Rightarrow - 4z = - 12\]
\[ \Rightarrow z = 3 . . . . . \left( 2 \right)\]

Solving (1) and (2),we get
y = 1
Hence, the coordinates of the point is (0, 1, 3).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.4 | Q 15 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A point is on the x-axis. What are its y-coordinates and z-coordinates?


A point is in the XZ-plane. What can you say about its y-coordinate?


The coordinates of points in the XY-plane are of the form _______.


Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).


A point R with x-coordinate 4 lies on the line segment joining the pointsP (2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by `((8k + 2)/(k+1), (-3)/(k+1), (10k + 4)/(k+1))`


If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant.


The mid-points of the sides of a triangle ABC are given by (–2, 3, 5), (4, –1, 7) and (6, 5, 3). Find the coordinates of AB and C.


A(1, 2, 3), B(0, 4, 1), C(–1, –1, –3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.


Using section formula, show that he points A(2, –3, 4), B(–1, 2, 1) and C(0, 1/3, 2) are collinear.

 


Given that  P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR


Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, –8) is divided by the yz-plane. 


Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c). 


Write the coordinates of the point P which is five-sixth of the way from A(−2, 0, 6) to B(10, −6, −12). 


If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.


The equations of x-axis in space are ______.


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.


Find the position vector of a point A in space such that `vec(OA)` is inclined at 60º to OX and at 45° to OY and `|vec(OA)|` = 10 units


Find the vector equation of the line which is parallel to the vector `3hati - 2hatj + 6hatk` and which passes through the point (1 ,–2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.


The reflection of the point (α, β, γ) in the xy-plane is ______.


A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×