Advertisements
Advertisements
प्रश्न
The reflection of the point (α, β, γ) in the xy-plane is ______.
पर्याय
(α, β, 0)
(0, 0, γ)
(–α, –β, γ)
(α, β, –γ)
उत्तर
The reflection of the point (α, β, γ) in the xy-plane is (α, β, –γ).
Explanation:
Reflection of point (α, β, γ) in xy-plane is (α, β, –γ).
APPEARS IN
संबंधित प्रश्न
A point is on the x-axis. What are its y-coordinates and z-coordinates?
A point is in the XZ-plane. What can you say about its y-coordinate?
Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).
Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).
A point R with x-coordinate 4 lies on the line segment joining the pointsP (2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R.
[Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by `((8k + 2)/(k+1), (-3)/(k+1), (10k + 4)/(k+1))`
The mid-points of the sides of a triangle ABC are given by (–2, 3, 5), (4, –1, 7) and (6, 5, 3). Find the coordinates of A, B and C.
A(1, 2, 3), B(0, 4, 1), C(–1, –1, –3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.
Given that P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR.
Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, –8) is divided by the yz-plane.
Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c).
Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).
If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.
Find the position vector of a point A in space such that `vec(OA)` is inclined at 60º to OX and at 45° to OY and `|vec(OA)|` = 10 units
Find the vector equation of the line which is parallel to the vector `3hati - 2hatj + 6hatk` and which passes through the point (1 ,–2, 3).
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.
`vec(AB) = 3hati - hatj + hatk` and `vec(CD) = - 3hati + 2hatj + 4hatk` are two vectors. The position vectors of the points A and C are `6hati + 7hatj + 4hatk` and `-9hatj + 2hatk`, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that `vec(PQ)` is perpendicular to `vec(AB)` and `vec(CD)` both.
The equation of a line, which is parallel to `2hati + hatj + 3hatk` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.