English

The reflection of the point (α, β, γ) in the xy-plane is ______. - Mathematics

Advertisements
Advertisements

Question

The reflection of the point (α, β, γ) in the xy-plane is ______.

Options

  • (α, β, 0)

  • (0, 0, γ)

  • (–α, –β, γ)

  • (α, β, –γ)

MCQ
Fill in the Blanks

Solution

The reflection of the point (α, β, γ) in the xy-plane is (α, β, –γ).

Explanation:

Reflection of point (α, β, γ) in xy-plane is (α, β, –γ).

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 238]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 33 | Page 238

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A point is in the XZ-plane. What can you say about its y-coordinate?


The coordinates of points in the XY-plane are of the form _______.


Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).


Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).


If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant.


A(1, 2, 3), B(0, 4, 1), C(–1, –1, –3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.


Find the coordinates of the points which tisect the line segment joining the points P(4, 2, –6) and Q(10, –16, 6). 


Using section formula, show that he points A(2, –3, 4), B(–1, 2, 1) and C(0, 1/3, 2) are collinear.

 


Given that  P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR


Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c). 


If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


The equations of x-axis in space are ______.


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.


`vec(AB) = 3hati - hatj + hatk` and `vec(CD) = - 3hati + 2hatj + 4hatk` are two vectors. The position vectors of the points A and C are `6hati + 7hatj + 4hatk` and `-9hatj + 2hatk`, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that `vec(PQ)` is perpendicular to `vec(AB)` and `vec(CD)` both.


A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


The equation of a line, which is parallel to `2hati + hatj + 3hatk` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×