English

The equations of x-axis in space are ______. - Mathematics

Advertisements
Advertisements

Question

The equations of x-axis in space are ______.

Options

  • x = 0, y = 0

  • x = 0, z = 0

  • x = 0

  • y = 0, z = 0

MCQ
Fill in the Blanks

Solution

The equations of x-axis in space are y = 0, z = 0.

Explanation:

On x-axis, the y- co-ordinate and z- co-ordinates are zero.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Solved Examples [Page 233]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 18 | Page 233

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A point is in the XZ-plane. What can you say about its y-coordinate?


The coordinates of points in the XY-plane are of the form _______.


Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).


Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).


A point R with x-coordinate 4 lies on the line segment joining the pointsP (2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by `((8k + 2)/(k+1), (-3)/(k+1), (10k + 4)/(k+1))`


The mid-points of the sides of a triangle ABC are given by (–2, 3, 5), (4, –1, 7) and (6, 5, 3). Find the coordinates of AB and C.


Find the coordinates of the points which tisect the line segment joining the points P(4, 2, –6) and Q(10, –16, 6). 


Given that  P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR


Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c). 


Write the coordinates of the point P which is five-sixth of the way from A(−2, 0, 6) to B(10, −6, −12). 


If a parallelopiped is formed by the planes drawn through the points (2,3,5) and (5, 9, 7) parallel to the coordinate planes, then write the lengths of edges of the parallelopiped and length of the diagonal. 


Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).


If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.


Find the position vector of a point A in space such that `vec(OA)` is inclined at 60º to OX and at 45° to OY and `|vec(OA)|` = 10 units


Find the vector equation of the line which is parallel to the vector `3hati - 2hatj + 6hatk` and which passes through the point (1 ,–2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.


The reflection of the point (α, β, γ) in the xy-plane is ______.


The equation of a line, which is parallel to `2hati + hatj + 3hatk` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.