Advertisements
Advertisements
Question
The coordinates of points in the XY-plane are of the form _______.
Solution
The coordinates of points in the XY-plane are of the form (x, y, 0).
APPEARS IN
RELATED QUESTIONS
A point is on the x-axis. What are its y-coordinates and z-coordinates?
A point is in the XZ-plane. What can you say about its y-coordinate?
Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).
Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).
The mid-points of the sides of a triangle ABC are given by (–2, 3, 5), (4, –1, 7) and (6, 5, 3). Find the coordinates of A, B and C.
A(1, 2, 3), B(0, 4, 1), C(–1, –1, –3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.
Find the coordinates of the points which tisect the line segment joining the points P(4, 2, –6) and Q(10, –16, 6).
Using section formula, show that he points A(2, –3, 4), B(–1, 2, 1) and C(0, 1/3, 2) are collinear.
Given that P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR.
Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, –8) is divided by the yz-plane.
Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c).
Write the coordinates of the point P which is five-sixth of the way from A(−2, 0, 6) to B(10, −6, −12).
Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).
If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.
The equations of x-axis in space are ______.
The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.
Find the position vector of a point A in space such that `vec(OA)` is inclined at 60º to OX and at 45° to OY and `|vec(OA)|` = 10 units
Find the vector equation of the line which is parallel to the vector `3hati - 2hatj + 6hatk` and which passes through the point (1 ,–2, 3).
`vec(AB) = 3hati - hatj + hatk` and `vec(CD) = - 3hati + 2hatj + 4hatk` are two vectors. The position vectors of the points A and C are `6hati + 7hatj + 4hatk` and `-9hatj + 2hatk`, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that `vec(PQ)` is perpendicular to `vec(AB)` and `vec(CD)` both.
The reflection of the point (α, β, γ) in the xy-plane is ______.
A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.
The equation of a line, which is parallel to `2hati + hatj + 3hatk` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.