Advertisements
Advertisements
Question
Write the coordinates of the point P which is five-sixth of the way from A(−2, 0, 6) to B(10, −6, −12).
Solution
Let the coordinates of the point be P(x, y, z).
Now \[PA = \frac{5}{6}PB\]
\[ \Rightarrow \frac{PA}{PB} = \frac{5}{6}\]
\[ \therefore x = \frac{5 \times 10 - 6 \times 2}{5 + 6}, y = \frac{5 \times \left( - 6 \right) + 6 \times 0}{5 + 6}, z = \frac{5 \times \left( - 12 \right) + 6 \times 6}{5 + 6}\]
\[ \therefore x = \frac{38}{11}, y = \frac{- 24}{11}, z = \frac{- 34}{11}\]
Hence, the coordinates of the point is\[\left( \frac{38}{11}, \frac{- 24}{11}, \frac{- 34}{11} \right)\]
APPEARS IN
RELATED QUESTIONS
A point is on the x-axis. What are its y-coordinates and z-coordinates?
A point is in the XZ-plane. What can you say about its y-coordinate?
The coordinates of points in the XY-plane are of the form _______.
Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).
Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).
If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant.
The mid-points of the sides of a triangle ABC are given by (–2, 3, 5), (4, –1, 7) and (6, 5, 3). Find the coordinates of A, B and C.
A(1, 2, 3), B(0, 4, 1), C(–1, –1, –3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.
Find the coordinates of the points which tisect the line segment joining the points P(4, 2, –6) and Q(10, –16, 6).
Using section formula, show that he points A(2, –3, 4), B(–1, 2, 1) and C(0, 1/3, 2) are collinear.
Given that P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR.
Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, –8) is divided by the yz-plane.
Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c).
Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).
If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.
The equations of x-axis in space are ______.
The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.
Find the position vector of a point A in space such that `vec(OA)` is inclined at 60º to OX and at 45° to OY and `|vec(OA)|` = 10 units
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.
The equation of a line, which is parallel to `2hati + hatj + 3hatk` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.