English

The equation of a line, which is parallel to 2i^+j^+3k^ and which passes through the point (5, –2, 4), is x-52=y+2-1=z-43. - Mathematics

Advertisements
Advertisements

Question

The equation of a line, which is parallel to `2hati + hatj + 3hatk` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 240]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 48 | Page 240

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A point is in the XZ-plane. What can you say about its y-coordinate?


The coordinates of points in the XY-plane are of the form _______.


Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).


Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).


If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant.


The mid-points of the sides of a triangle ABC are given by (–2, 3, 5), (4, –1, 7) and (6, 5, 3). Find the coordinates of AB and C.


Given that  P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR


Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, –8) is divided by the yz-plane. 


Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c). 


If a parallelopiped is formed by the planes drawn through the points (2,3,5) and (5, 9, 7) parallel to the coordinate planes, then write the lengths of edges of the parallelopiped and length of the diagonal. 


Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).


If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


The equations of x-axis in space are ______.


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.


`vec(AB) = 3hati - hatj + hatk` and `vec(CD) = - 3hati + 2hatj + 4hatk` are two vectors. The position vectors of the points A and C are `6hati + 7hatj + 4hatk` and `-9hatj + 2hatk`, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that `vec(PQ)` is perpendicular to `vec(AB)` and `vec(CD)` both.


The reflection of the point (α, β, γ) in the xy-plane is ______.


A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×