Advertisements
Advertisements
Question
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
Options
`10/(6sqrt(5))`
`4/(5sqrt(2))`
`(2sqrt(3))/5`
`sqrt(2)/10`
Solution
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is `sqrt(2)/10`.
Explanation:
From equation of line we find the direction vector
`vecs` = (3, 4, 5)(l, m, n)
From equation of plane we find the normal vector
`vecq` = (2, −2, 1)(A, B, C)
Using formula,
sin θ = `|Al + Bm + Cn|/(sqrt(A^2 + B^2 + C^2 * sqrt(1^2 + m^2 + n^2)`
sin θ = `|6 - 8 + 4|/(sqrt(4 + 4 + 1) * sqrt(9 + 16 + 25)`
sin θ = `3/(3.5sqrt(2))`
sin θ = `sqrt(2)/10`
APPEARS IN
RELATED QUESTIONS
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(7, 4, –3)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(–2, 3, 4) in the yz-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Write the distance of the point P(3, 4, 5) from z-axis.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.
The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.