English

Name the Octants in Which the Following Points Lie: (7, 4, –3) - Mathematics

Advertisements
Advertisements

Question

Name the octants in which the following points lie: 

 (7, 4, –3)

Solution

The x-coordinate, the y-coordinate and the z-coordinate of the point (7, 4, −3) are positive, positive and negative, respectively.
 Therefore, this point lies in XOYZ' octant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 15.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 15.1 | Q 1.4 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie:

 (2, –5, –7) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


What is the locus of a point for which y = 0, z = 0?


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The locus represented by xy + yz = 0 is ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×