English

If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______. - Mathematics

Advertisements
Advertisements

Question

If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.

Options

  • sin α, sin β, sin γ

  • cos α, cos β, cos γ

  • tan α, tan β, tan γ

  • cos2α, cos2β, cos2γ

MCQ
Fill in the Blanks

Solution

If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are cos α, cos β, cos γ.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Solved Examples [Page 232]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 16 | Page 232

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie:

 (2, –5, –7) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


What is the locus of a point for which y = 0, z = 0?


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


What is the locus of a point for which y = 0, z = 0?


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×