English

Verify the Following: (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) Are Vertices of a Parallelogram. - Mathematics

Advertisements
Advertisements

Question

Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.

Solution

 Let A(\[-\]1, 2, 1) , B(1, \[-\]7, 8), D(2, \[-\]3, 4) be the vertices of quadrilateral \[\square ABCD\]

\[AB = \sqrt{\left( 1 + 1 \right)^2 + \left( - 2 - 2 \right)^2 + \left( 5 - 1 \right)^2}\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[BC = \sqrt{\left( 4 - 1 \right)^2 + \left( - 7 + 2 \right)^2 + \left( 8 - 5 \right)^2}\]
\[ = \sqrt{9 + 25 + 9}\]
\[ = \sqrt{43}\]
\[CD = \sqrt{\left( 2 - 4 \right)^2 + \left( - 3 + 7 \right)^2 + \left( 4 - 8 \right)^2}\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[DA = \sqrt{\left( - 1 - 2 \right)^2 + \left( 2 + 3 \right)^2 + \left( 1 - 4 \right)^2}\]
\[ = \sqrt{9 + 25 + 9}\]
\[ = \sqrt{43}\]
\[ \therefore AB = CD \text{ and } BC = DA\]
Since, each pair of opposite sides are equal.
Thus, quadrilateral \[\square ABCD\]is a parallelogram.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 20.3 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie:

(–5, 4, 3) 


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


If the directions cosines of a line are k, k, k, then ______.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×