English

Find the Ratio in Which the Sphere X2 + Y2 + Z2 = 504 Divides the Line Joining the Points (12, –4, 8) and (27, –9, 18). - Mathematics

Advertisements
Advertisements

Question

Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).

Solution

Let the sphere `x^2+y^2+z^2=504` meet the line joining the given points at the point (x1y1z1).

Then, we have:

`x_1^2+y_1^2+z_1^2=504`         .............(1)

Suppose the point (x1y1z1) divides the line joining the points  (12, – 4, 8) and (27, – 9, 18) in the ratio λ:1.

∴`x_1=(27 λ+12)/( λ+1), y_1=(-9λ-4)/(λ+1),z_1=(18λ+8)/(λ+1)`

Substitute these values in equation (1):

`(27λ+12)^2/(λ+1)^2+(-9λ-4)^2/(λ+1)^2+(18λ+8)^2/(λ+1)^2=504`

⇒` 9(9λ+4)^2+(9λ+4)^2+4(9λ+4)^2=504(λ+1)^2`

⇒`9λ+4=+-6(λ+1)`

⇒`λ=+-2/3`

Thus, the sphere divides the line joining the given points in the ratio 2:3 and 2:– 3.

Hence, the given sphere `x^2+y^2+z^2=504` divides the line joining the points (12, – 4, 8) and (27, – 9, 18) internally in the ratio 2:3 and externally in the ratio −2:3.

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.3 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.3 | Q 9 | Page 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie: 

(–5, –4, 7) 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Write the distance of the point P(3, 4, 5) from z-axis.


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If the directions cosines of a line are k, k, k, then ______.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×