Advertisements
Advertisements
Question
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Solution
Let A(0, 7, \[-\]10) , B(1, 6, \[-\]6) , C(4, 9, \[-\]be the vertices of \[\bigtriangleup ABC\] AB = \[\sqrt{\left( 1 - 0 \right)^2 + \left( 6 - 7 \right)^2 + \left( - 6 + 10 \right)^2}\]
\[= \sqrt{1^2 + \left( - 1 \right)^2 + 4^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]
BC = \[\sqrt{\left( 4 - 1 \right)^2 + \left( 9 - 6 \right)^2 + \left( - 6 + 6 \right)^2}\]
\[ = \sqrt{9 + 9}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]
CA= \[\sqrt{\left( 0 - 4 \right)^2 + \left( 7 - 9 \right)^2 + \left( - 10 + 6 \right)^2}\]
\[= \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
Clearly, AB = BC
Thus, the given points are the vertices of an isosceles triangle.
APPEARS IN
RELATED QUESTIONS
The x-axis and y-axis taken together determine a plane known as_______.
Name the octants in which the following points lie:
(2, –5, –7)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(5, 2, –7) in the xy-plane.
Find the image of:
(–4, 0, 0) in the xy-plane.
A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
Write the distance of the point P (2, 3,5) from the xy-plane.
Write the distance of the point P(3, 4, 5) from z-axis.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
What is the locus of a point for which y = 0, z = 0?
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.
If the directions cosines of a line are k, k, k, then ______.
The locus represented by xy + yz = 0 is ______.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.