English

The locus represented by xy + yz = 0 is ______. - Mathematics

Advertisements
Advertisements

Question

The locus represented by xy + yz = 0 is ______.

Options

  • A pair of perpendicular lines

  • A pair of parallel lines

  • A pair of parallel planes

  • A pair of perpendicular planes

MCQ
Fill in the Blanks

Solution

The locus represented by xy + yz = 0 is a pair of perpendicular planes.

Explanation:

Given that, xy + yz = 0

y.(x + z) = 0

y = 0 or x + z = 0

Here y = 0 is one plane and x + z = 0 is another plane.

So, it is a pair of perpendicular planes.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 238]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 35 | Page 238

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×