English

Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2). - Mathematics

Advertisements
Advertisements

Question

Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).

Sum

Solution

Let the point on the y-axis be Y\[\left( 0, y, 0 \right)\]which is equidistant from the points P\[\left( 3, 1, 2 \right)\]and Q \[\left( 5, 5, 2 \right)\]

Then, PY = QY

Now,

`sqrt((3 - 0)^2 + (1 - y)^2 + (2 - 0)^2) = sqrt((5 - 0)^2 + (5 - y)^2 + (2 - 0)^2)`

`=> sqrt((3)^2 + (1 - y)^2 + (2)^2) = sqrt((5)^2 + (5 - y)^2 + (2)^2)`

`=> sqrt(9 + (1 - y)^2 + 4) = sqrt(25 + (5 - y)^2 + 4)`

`=> 9 + (1 - y)^2 + 4 = 25 + (5 - y)^2 + 4`

`=> 9 + (1 - y)^2 + cancel(4) = 25 + (5 - y)^2 + cancel(4)`

`=> 9 + (1 - y)^2 = 25 + (5 - y)^2`

`=> 1 + y^2 - 2y = 25 - 9 + (5 - y)^2`

`=> 1 + y^2 - 2y = 16 + 25 + y^2 - 10y`

`=> 1 + cancel(y^2) - 2y = 41 + cancel(y^2) - 10y`

`=> - 2y = 41 - 1 - 10y`

`=> - 2y = 40 - 10y`

⇒ 8y = 40
⇒ y = `40/8`

⇒ y = 5

Thus, the required point on the y-axis is (0, 5, 0).

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 6 | Page 9

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

 (7, 4, –3)


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the distance of the point P(3, 4, 5) from z-axis.


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×