English

The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______. - Mathematics

Advertisements
Advertisements

Question

The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.

Fill in the Blanks

Solution

The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is `3hati + 4hatj - 7hatk + lambda|-2hati - 5hatj + 13hatk|`.

Explanation:

Given points are A(3, 4, –7), B(1, –1, 6) 

`vecA = 3hati + 4hatj - 7hatk`

`vecB = hati - hatj + 6hatk`

∴ Vector equation 

`vecr = (3hati + 4hatj - 7hatk) + lambda[hati - hatj + 6hatk - (3hati + 4hatj - 7hatk)]`

= `3hati + 4hatj - 7hatk + lambda[-2hati - 5hatj + 13hatk]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 239]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 40 | Page 239

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

(–5, –4, 7) 


Name the octants in which the following points lie: 

(–5, –3, –2) 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Write the distance of the point P (2, 3,5) from the xy-plane.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


If the directions cosines of a line are k, k, k, then ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×