English

The cartesian equation of the plane r→⋅(i^+j^-k^) is ______. - Mathematics

Advertisements
Advertisements

Question

The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.

Fill in the Blanks

Solution

The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is x = 1, y = z.

Explanation:

Putting `vecr = xhati + yhatj + zhatk` in the given equation

`xhati + yhatj + zhatk = (hati + hatj + hatk) + lambda(hatj + hatk)`

∴ `xhati + yhatj + zhatk = hati + (1 + lambda)hatj + (1 + lambda)hatk`

∴  x = 1, y = 1 + λ, z = 1 + λ

∴  x = 1, y = z

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 239]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 41 | Page 239

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×