English

Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0 - Mathematics

Advertisements
Advertisements

Question

Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0

Sum

Solution

We have,  l + m + n = 0, l2 + m2 – n2 = 0.

Eliminating n form both the equation. we have

l2 + m2 – (l + m)2 = 0

⇒ l2 + m2 – l2 – m2 – 2ml = 0

⇒ 2lm = 0

⇒ lm = 0

⇒ l = 0 or m = 0

If l = 0, we have m + n = 0 and m2 – n2 = 0

⇒ l = 0, m = λ, n = λ

If m = 0, we have l + m = 0 and l2 – m2 = 0

  ⇒ l = – λ, m = 0, n = λ

So, the vector parallel to these given lines are 

`veca = hatj - hatk` and `vecb = -hati + hatk`

If angle between the lines is 'θ', then

`cos theta = (|veca * vecb|)/(|veca||vecb|) = 1/(sqrt(2)*sqrt(2))`

⇒ `cos theta = 1/2`

∴ θ = `pi/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 236]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 12 | Page 236

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


The x-axis and y-axis taken together determine a plane known as_______.


Name the octants in which the following points lie:

 (2, –5, –7) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Write the distance of the point P(3, 4, 5) from z-axis.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


What is the locus of a point for which y = 0, z = 0?


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×