Advertisements
Advertisements
प्रश्न
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
उत्तर
We have, l + m + n = 0, l2 + m2 – n2 = 0.
Eliminating n form both the equation. we have
l2 + m2 – (l + m)2 = 0
⇒ l2 + m2 – l2 – m2 – 2ml = 0
⇒ 2lm = 0
⇒ lm = 0
⇒ l = 0 or m = 0
If l = 0, we have m + n = 0 and m2 – n2 = 0
⇒ l = 0, m = λ, n = λ
If m = 0, we have l + m = 0 and l2 – m2 = 0
⇒ l = – λ, m = 0, n = λ
So, the vector parallel to these given lines are
`veca = hatj - hatk` and `vecb = -hati + hatk`
If angle between the lines is 'θ', then
`cos theta = (|veca * vecb|)/(|veca||vecb|) = 1/(sqrt(2)*sqrt(2))`
⇒ `cos theta = 1/2`
∴ θ = `pi/3`
APPEARS IN
संबंधित प्रश्न
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(–4, 0, 0) in the xy-plane.
Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
The perpendicular distance of the point P(3, 3,4) from the x-axis is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
If the directions cosines of a line are k, k, k, then ______.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The locus represented by xy + yz = 0 is ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.