मराठी

Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.

बेरीज

उत्तर

The given planes are

P1: 5x + 3y + 6z + 8 = 0

P2: x + 2y + 3z – 4 = 0

P3: 2x + y – z + 5 = 0

Now, the equation of the plane passing through the line of intersection of P1 and P3 is

(x + 2y + 3z – 4) + λ(2x + y – z + 5) = 0

(1 + 2λ)x + (2 + λ)y + (3 – λ)z – 4 + 5λ = 0   ......(i)

From the question its understood that plane (i) is perpendicular to P1, then

5(1 + 2λ) + 3(2 + λ) + 6(3 – λ) = 0

5 + 10λ + 6 + 3λ + 18 – 6λ = 0

7λ + 29 = 0

λ = `(-29)/7`

Putting the value of the equation (i), we get

`[1 + 2((-29)/7)]x + [2 - 29/7]y + [3 + 29/7]z - 4 + 5((-29)/7)` = 0

⇒ `(-15)/7x - 15/7y + 50/7z - 4 - 145/7` = 0

–15x – 15y + 50z – 28 – 145 = 0

–15x – 15y + 50z – 173 = 0

⇒ 51x + 15y – 50z + 173 = 0

Thus, the required equation of plane is 51x + 15y – 50z + 173 = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Exercise | Q 22 | पृष्ठ २३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie: 

(4, –3, 5)


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the distance of the point P(3, 4, 5) from z-axis.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×