Advertisements
Advertisements
प्रश्न
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
उत्तर
Given plane is 2x – 2y + 4z + 5 = 0 and point `(1, 3/2, 2)`
The direction ratios of the normal to the plane are 2, –2, 4
So, the equation of the line passing through `(1, 3/2, 2)` and direction ratios are equal to the direction ratios of the normal to the plane i.e. 2, –2, 4 is
`(x - 1)/2 = (y - 3/2)/(-2) = (z - 2)/4 = lambda`
Now, any point in the plane is 2λ + 1, –2λ + `3/2`, 4λ + 2
Since, the point lies in the plane, then
2(2λ + 1) – 2(–2λ + `3/2`) + 4(4λ + 2) + 5 = 0
4λ + 2 + 4λ – 3 + 16λ + 8 + 5 = 0
24λ + 12 = 0λ = `1/2`
So, the coordinates of the point in the plane are
`2(-1/2) + 1, -2(-1/2) + 3/2, 4(-1/2) + 2 = 0, 5/2, 0`
Thus, the foot of the perpendicular is (0, 5/2, 0) and the required length
= `sqrt((1 - 0)^2 + (3/2 - 5/2)^2 + (2 - 0)^2)`
= `sqrt(1 + 1 + 4)`
= `sqrt(6)` units
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(4, –3, 5)
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
The perpendicular distance of the point P(3, 3,4) from the x-axis is
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.