Advertisements
Advertisements
प्रश्न
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
उत्तर
Let P\[\equiv\](3, 0, −1), Q\[\equiv\](−2, 5, 4)
PE = Distance between the parallel planes ABCP and FQDE
=\[\left| 4 + 1 \right| = 5\]
(These planes are perpendicular to the z-axis)
PA = Distance between the parallel planes ABQF and PCDE
= \[\left| - 2 - 3 \right| = 5\]
(These planes are perpendicular to the x-axis)
Similarly, PC =\[\left| 5 - 0 \right| = 5\]
Thus, the length of the edges of the parallelepiped are 5, 5 and 5
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(–5, –4, 7)
Find the image of:
(–4, 0, 0) in the xy-plane.
A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.
Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.
Write the distance of the point P (2, 3,5) from the xy-plane.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
What is the locus of a point for which y = 0, z = 0?
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is
The perpendicular distance of the point P(3, 3,4) from the x-axis is
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.
If the directions cosines of a line are k, k, k, then ______.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.