मराठी

Find the direction cosines of the line passing through the points P (2, 3, 5) and Q (–1, 2, 4). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).

बेरीज

उत्तर

The direction cosines of a line passing through the points P(x1, y1, z1) and Q(x2, y2, z2) are

`(x_2 - x_1)/"PQ", (y_2 - y_1)/"PQ", (z_2 - z_1)/"PQ"`

Here PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2)`

= `sqrt((-1 - 2)^2 + (2 - 3)^2 + (4 - 5)^2)`

= `sqrt(9 + 1 + 1)`

= `sqrt(11)`

Hence D.C.'s are `+-((-3)/sqrt(11), (-1)/sqrt(11), (-1)/sqrt(11))` or `+-(3/sqrt(11), 1/sqrt(11), 1/sqrt(11))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Solved Examples [पृष्ठ २२४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 2 | पृष्ठ २२४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: 

(–5, –4, 7) 


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


What is the locus of a point for which y = 0, z = 0?


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The locus represented by xy + yz = 0 is ______.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×