Advertisements
Advertisements
प्रश्न
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
उत्तर
Given x = py + q ⇒ y = `(x - q)/p`
And z = ry + s ⇒ y = `(z - s)/r`
So, the equation becomes
`(x - q)/p = y/1 = (z - s)/r` in which d'ratios are a1 = p, b1 = 1, c1 = r
Similarly x = p'y + q' ⇒ y = `(x - q"'")/(p"'")`
And z = r'y + s' ⇒ y = `(z - s"'")/(r"'")`
Hence, the equation becomes
`(x - q"'")/(p"'") = y/1 = (z - s"'")/(r"'")` in which a2 = p', b2 = 1, c2 = r'
If the lines are perpendicular to each other, then
a1a2 + b1b2 + c1c2 = 0
pp' + 1.1 + rr' = 0
Thus, the given lines are perpendicular if pp' + rr' + 1 = 0.
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
The x-axis and y-axis taken together determine a plane known as_______.
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(–5, –3, –2)
Find the image of:
(–5, 4, –3) in the xz-plane.
A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
The locus represented by xy + yz = 0 is ______.
The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.
The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.