मराठी

The Coordinates of the Foot of the Perpendicular Drawn from the Point P(3, 4, 5) on The Yz- Plane Are - Mathematics

Advertisements
Advertisements

प्रश्न

The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are

पर्याय

  • (3, 4, 0)

  •  (0, 4, 5) 

  • (3, 0, 5) 

  •  (3, 0, 0) 

MCQ

उत्तर

We know that the x - coordinate on yz - plane is 0.
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are (0, 4, 5).
Hence, the correct answer is option (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.5 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.5 | Q 10 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

(–5, –3, –2) 


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Write the distance of the point P (2, 3,5) from the xy-plane.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×