Advertisements
Advertisements
प्रश्न
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
उत्तर
We know that, equation of the plane passing through two points (x1, y1, z1) and (x2, y2, z2) with its normal’s direction ratios is
a(x – x1) + b(y – y1) + c(z – z1) = 0 ......(i)
Now, if the plane is passing through two points (2, 1, –1) and (–1, 3, 4) then
a(x2 – x1) + b(y2 – y1) + c(z2 – z1) = 0
a(–1 – 2) + b(3 – 1) + c(4 + 1) = 0
–3a + 2b + 5c = 0 .......(ii)
As the required plane is perpendicular to the given plane x – 2y + 4z = 10, then
1.a – 2.b + 4.c = 10 ......(iii)
On solving (ii) and (iii) we get,
`a/(8 + 10) = (-b)/(-2 - 5) = c/(6 - 2) = lambda`
So, a = 18λ, b = 17λ and c = 4λ
Thus, the required plane is
18λ(x – 2) + 17λ(y – 1) + 4λ(z + 1) = 0
18x – 36 + 17y – 17 + 4z + 4 = 0
⇒ 18x + 17y + 4z – 49 = 0
APPEARS IN
संबंधित प्रश्न
The x-axis and y-axis taken together determine a plane known as_______.
Coordinate planes divide the space into ______ octants.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(7, 4, –3)
Name the octants in which the following points lie:
(–5, –4, 7)
Find the image of:
(–2, 3, 4) in the yz-plane.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
The perpendicular distance of the point P(3, 3,4) from the x-axis is
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.