Advertisements
Advertisements
प्रश्न
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
उत्तर
Given point is (3, 0, 1) and the equation of planes are
x + 2y = 0 …...(i)
And 3y – z = 0 .....(ii)
Equation of any line l passing through (3, 0, 1) is l: `(x – 3)/a = (y – 0)/b = (z – 1)/c`
Now, the direction ratios of the normal to plane (i) and plane (ii) are (1, 2, 0) and (0, 3, 1).
As the line is parallel to both the planes, we have
1.a + 2.b + 0.c = 0
⇒ a + 2b + 0c = 0
And 0.a + 3.b – 1.c = 0
⇒ 0a + 3b – c = 0
So, `a/(-2 - 0) = (-b)/(-1 - 0) = c/(3 - 0) = lambda`
∴ `a = -2lambda, b = lambda, c = 3lambda`
So, the equation of line is `(x - 3)/(-2lambda) = y/lambda = (z - 1)/(3lambda)`
Thus, the required equation is `(x - 3)/(-2) = y/1 = (z - 1)/3`
or In vetor form is `(x - 3)hati + yhatj + (z - 1)hatk = lambda(-2hati + hatj + 3hatk)`
APPEARS IN
संबंधित प्रश्न
Coordinate planes divide the space into ______ octants.
Name the octants in which the following points lie:
(7, 4, –3)
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Write the distance of the point P(3, 4, 5) from z-axis.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The locus represented by xy + yz = 0 is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.