हिंदी

Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.

योग

उत्तर

Given point is (3, 0, 1) and the equation of planes are

x + 2y = 0 …...(i)

And 3y – z = 0  .....(ii)

Equation of any line l passing through (3, 0, 1) is l: `(x  –  3)/a = (y  –  0)/b = (z  –  1)/c`

Now, the direction ratios of the normal to plane (i) and plane (ii) are (1, 2, 0) and (0, 3, 1).

As the line is parallel to both the planes, we have

1.a + 2.b + 0.c = 0

⇒ a + 2b + 0c = 0 

And 0.a + 3.b – 1.c = 0

⇒ 0a + 3b – c = 0

So, `a/(-2 - 0) = (-b)/(-1 - 0) = c/(3 - 0) = lambda`

∴ `a = -2lambda, b = lambda, c = 3lambda`

So, the equation of line is `(x - 3)/(-2lambda) = y/lambda = (z - 1)/(3lambda)`

Thus, the required equation is `(x - 3)/(-2) = y/1 = (z - 1)/3`

or In vetor form is `(x - 3)hati + yhatj + (z - 1)hatk = lambda(-2hati + hatj + 3hatk)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 19 | पृष्ठ २३६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


What is the locus of a point for which y = 0, z = 0?


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The locus represented by xy + yz = 0 is ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×