हिंदी

Determine the Points in Zx-plane Are Equidistant from the Points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 

उत्तर

We know that the y-coordinate of every point on the zx-plane is zero.
So, let P (x, 0, z) be a point on the zx-plane such that PA PB = PC

 Now, PA = PB

\[\Rightarrow \left( x - 1 \right)^2 + \left( 0 + 1 \right)^2 + \left( z - 0 \right)^2 = \left( x - 2 \right)^2 + \left( 0 - 1 \right)^2 + \left( x - 2 \right)^2\]

\[\Rightarrow x^2 + 1 - 2x + 1 + z^2 = x^2 - 4x + 4 + 1 + z^2 - 4z + 4\]
\[ \Rightarrow - 2x + 2 = - 4x - 4z + 9\]
\[ \Rightarrow - 2x + 4x - 4z = 7\]
\[ \Rightarrow 2x - 4z = 7\]
\[ \Rightarrow x - 2z = \frac{7}{2} . . . \left( 1 \right)\]
\[ PB = PC\]
\[ \Rightarrow P B^2 = P C^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( 0 - 1 \right)^2 + \left( z - 2 \right)^2 = \left( x - 3 \right)^2 + \left( 0 - 2 \right)^2 + \left( z + 1 \right)^2 \]
\[ \Rightarrow x^2 - 4x + 4 + 1 + z^2 - 4z + 4 = x^2 - 6x + 9 + 4 + z^2 + 2z + 1\]
\[ \Rightarrow - 4x - 4z + 9 = - 6x + 2z + 14\]
\[ \Rightarrow - 4x + 6x - 4z - 2z = 14 - 9\]
\[ \Rightarrow 2x - 6z = 5\]
\[ \Rightarrow x - 3z = \frac{5}{2}\]
\[ \therefore x = \frac{5}{2} + 3z . . . \left( 2 \right)\]
\[\text{ Putting the value of x in equation } \left( 1 \right): \]
\[ x - 2z = \frac{7}{2}\]
\[ \Rightarrow \frac{5}{2} + 3z - 2z = \frac{7}{2}\]
\[ \Rightarrow \frac{5}{2} + z = \frac{7}{2}\]
\[ \Rightarrow z = \frac{7}{2} - \frac{5}{2}\]
\[ \Rightarrow z = \frac{7 - 5}{2}\]
\[ \Rightarrow z = \frac{2}{2}\]
\[ \therefore z = 1\]
\[\text{ Putting the value of z in equation } \left( 2 \right): \]
\[ x = \frac{5}{2} + 3z\]
\[ \Rightarrow x = \frac{5}{2} + 3\left( 1 \right)\]
\[ \Rightarrow x = \frac{5}{2} + 3\]
\[ \Rightarrow x = \frac{5 + 6}{2}\]
\[ \therefore x = \frac{11}{2}\]

Hence, the required point is \[\left( \frac{11}{2}, 0, 1 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 4.3 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the distance of the point P(3, 4, 5) from z-axis.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×