Advertisements
Advertisements
प्रश्न
Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).
उत्तर
Let M be the point on the z-axis.
Then, the coordinates of M will be\[\left( 0, 0, z \right)\]
Let M be equidistant from the points A\[\left( 1, 5, 7 \right)\]and B \[\left( 5, 1, - 4 \right)\]
AM =\[\sqrt{\left( 0 - 1 \right)^2 + \left( 0 - 5 \right)^2 + \left( z - 7 \right)^2}\]
\[= \sqrt{\left( - 1 \right)^2 + \left( - 5 \right)^2 + \left( z - 7 \right)^2}\]
\[ = \sqrt{1 + 25 + z^2 - 14z + 49}\]
\[ = \sqrt{z^2 - 14z + 75}\]
BM =\[\sqrt{\left( 0 - 5 \right)^2 + \left( 0 - 1 \right)^2 + \left( z + 4 \right)^2}\]
\[ = \sqrt{25 + 1 + z^2 + 8z + 16}\]
\[ = \sqrt{z^2 + 8z + 42}\]
\[ z^2 - 14z + 75 = z^2 + 8z + 42\]
\[ - 14z - 8z = 42 - 75\]
\[ - 22z = - 33\]
\[z = \frac{33}{22}\]
\[z = \frac{3}{2}\]
Thus, the coordinates of M are \[\left( 0, 0, \frac{3}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(7, 4, –3)
Name the octants in which the following points lie:
(–5, –4, 7)
Name the octants in which the following points lie:
(–5, –3, –2)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
What is the locus of a point for which y = 0, z = 0?
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.