हिंदी

Are the Points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the Vertices of a Right-angled Triangle? - Mathematics

Advertisements
Advertisements

प्रश्न

Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?

उत्तर

Let A(3,6,9), B(10,20,30) and C( 25,\[-\]41,5) are vertices of \[\bigtriangleup ABC\]

AB =\[\sqrt{\left( 10 - 3 \right)^2 + \left( 20 - 6 \right)^2 + \left( 30 - 9 \right)^2}\]

\[= \sqrt{\left( 7 \right)^2 + \left( 14 \right)^2 + \left( 21 \right)^2}\]
\[ = \sqrt{49 + 196 + 441}\]
\[ = \sqrt{686}\]
\[ = 7\sqrt{14}\]

BC =\[\sqrt{\left( 25 - 10 \right)^2 + \left( - 41 - 20 \right)^2 + \left( 5 - 30 \right)^2}\]

\[= \sqrt{\left( 15 \right)^2 + \left( - 61 \right)^2 + \left( - 25 \right)^2}\]
\[ = \sqrt{225 + 3721 + 625}\]
\[ = \sqrt{4571}\]

CA=\[\sqrt{\left( 3 - 25 \right)^2 + \left( 6 + 41 \right)^2 + \left( 9 - 5 \right)^2}\]

\[= \sqrt{\left( - 22 \right)^2 + \left( 47 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{484 + 2209 + 16}\]
\[ = \sqrt{2709}\]
\[ = 3\sqrt[]{301}\] 

\[A B^2 + B C^2 = \left( 7\sqrt{14} \right)^2 + \left( \sqrt{4571} \right)^2 \]
\[ = 686 + 4571\]
\[ = 5257\]
\[C A^2 = 2709\]

\[ \therefore A B^2 + B C^2 \neq C A^2\]

A triangle\[\bigtriangleup ABC\]is right-angled at B if \[C A^2 = A B^2 + B C^2\]

But,\[C A^2\]  ≠\[A B^2 + B C^2\]Hence, the points are not vertices of a right-angled triangle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 19 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie: 

 (7, 4, –3)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


What is the locus of a point for which y = 0, z = 0?


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


If the directions cosines of a line are k, k, k, then ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×