Advertisements
Advertisements
प्रश्न
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
उत्तर
Let P\[\equiv\](3, 0, −1), Q\[\equiv\](−2, 5, 4)
PE = Distance between the parallel planes ABCP and FQDE
=\[\left| 4 + 1 \right| = 5\]
(These planes are perpendicular to the z-axis)
PA = Distance between the parallel planes ABQF and PCDE
= \[\left| - 2 - 3 \right| = 5\]
(These planes are perpendicular to the x-axis)
Similarly, PC =\[\left| 5 - 0 \right| = 5\]
Thus, the length of the edges of the parallelepiped are 5, 5 and 5
APPEARS IN
संबंधित प्रश्न
The x-axis and y-axis taken together determine a plane known as_______.
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(7, 4, –3)
Find the image of:
(–4, 0, 0) in the xy-plane.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
Write the distance of the point P(3, 4, 5) from z-axis.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
What is the locus of a point for which y = 0, z = 0?
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
The perpendicular distance of the point P(3, 3,4) from the x-axis is
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.