हिंदी

Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.

योग

उत्तर

The given planes are

P1: 5x + 3y + 6z + 8 = 0

P2: x + 2y + 3z – 4 = 0

P3: 2x + y – z + 5 = 0

Now, the equation of the plane passing through the line of intersection of P1 and P3 is

(x + 2y + 3z – 4) + λ(2x + y – z + 5) = 0

(1 + 2λ)x + (2 + λ)y + (3 – λ)z – 4 + 5λ = 0   ......(i)

From the question its understood that plane (i) is perpendicular to P1, then

5(1 + 2λ) + 3(2 + λ) + 6(3 – λ) = 0

5 + 10λ + 6 + 3λ + 18 – 6λ = 0

7λ + 29 = 0

λ = `(-29)/7`

Putting the value of the equation (i), we get

`[1 + 2((-29)/7)]x + [2 - 29/7]y + [3 + 29/7]z - 4 + 5((-29)/7)` = 0

⇒ `(-15)/7x - 15/7y + 50/7z - 4 - 145/7` = 0

–15x – 15y + 50z – 28 – 145 = 0

–15x – 15y + 50z – 173 = 0

⇒ 51x + 15y – 50z + 173 = 0

Thus, the required equation of plane is 51x + 15y – 50z + 173 = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 22 | पृष्ठ २३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie: 

(4, –3, 5)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×