हिंदी

Find the Locus of the Point, the Sum of Whose Distances from the Points A(4, 0, 0) and B(–4, 0, 0) is Equal to 10. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.

उत्तर

Let (x, y, z) be any point , the sum of whose distance from the points A(4,0,0) and B(\[-\]4,0,0)
is equal to 10. Then, PA + PB = 10

\[\Rightarrow \sqrt{\left( x - 4 \right)^2 + \left( y - 0 \right)^2 + \left( z - 0 \right)^2} + \sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2 + \left( z - 0 \right)^2} = 10\]
\[ \Rightarrow \sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2 + \left( z - 0 \right)^2} = 10 - \sqrt{\left( x - 4 \right)^2 + \left( y - 0 \right)^2 + \left( z - 0 \right)^2}\]
\[ \Rightarrow \sqrt{x^2 + 8x + 16 + y^2 + z^2} = 10 - \sqrt{x^2 - 8x + 16 + y^2 + z^2}\]
\[\Rightarrow x^2 + 8x + 16 + y^2 + z^2 = 100 + x^2 - 8x + 16 + y^2 + z^2 - 20\sqrt{x^2 - 8x + 16 + y^2 + z^2}\]
\[ \Rightarrow 16x - 100 = - 20\sqrt{x^2 - 8x + 16 + y^2 + z^2}\]
\[ \Rightarrow 4x - 25 = - 5\sqrt{x^2 - 8x + 16 + y^2 + z^2}\]
\[ \Rightarrow 16 x^2 - 200x + 625 = 25\left( x^2 - 8x + 16 + y^2 + z^2 \right)\]
\[ \Rightarrow 16 x^2 - 200x + 625 = 25 x^2 - 200x + 400 + 25 y^2 + 25 z^2 \]
\[ \Rightarrow 9 x^2 + 25 y^2 + 25 z^2 - 225 = 0\]

\[\therefore 9 x^2 + 25 y^2 + 25 z^2 - 225 = 0 \text{ is the required locus } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 22 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of:

 (5, 2, –7) in the xy-plane.


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


If the directions cosines of a line are k, k, k, then ______.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The locus represented by xy + yz = 0 is ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×