Advertisements
Advertisements
प्रश्न
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
उत्तर
Let P (1, 6, 3) be the given point and let L be the foot of perpendicular from P to the given line
The coordinates of a general point on the given line are `(x - 0)/1 = (y - 1)/2 = (z - 2)/3`
i.e., x = λ, y = 2λ + 1, z = 3λ + 2.
If the coordinates of L are (λ, 2λ + 1, 3λ + 2)
Then the direction ratios of PL are λ – 1, 2λ – 5, 3λ – 1.
But the direction ratios of given line which is perpendicular to PL are 1, 2, 3.
Therefore, (λ – 1) 1 + (2λ – 5) 2 + (3λ – 1) 3 = 0, which gives λ = 1.
Hence coordinates of L are (1, 3, 5).
Let Q(x1, y1, z1) be the image of P(1, 6, 3) in the given line.
Then L is the mid-point of PQ.
Therefore, `(x_1 + 1)/2 = 1, (y_1 + 6)/2 = 3, (z_1 + 3)/2` = 5
⇒ x1 = 1, y1 = 0, z1 = 7
Hence, the image of (1, 6, 3) in the given line is (1, 0, 7).
APPEARS IN
संबंधित प्रश्न
Coordinate planes divide the space into ______ octants.
Find the image of:
(5, 2, –7) in the xy-plane.
Find the image of:
(–4, 0, 0) in the xy-plane.
Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
Write the distance of the point P (2, 3,5) from the xy-plane.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
What is the locus of a point for which y = 0, z = 0?
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are
The perpendicular distance of the point P(3, 3,4) from the x-axis is
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.