हिंदी

The Coordinates of the Foot of the Perpendicular from a Point P(6,7, 8) on X - Axis Are - Mathematics

Advertisements
Advertisements

प्रश्न

The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 

विकल्प

  •  (6, 0, 0)

  •  (0, 7, 0)

  •  (0, 0, 8)

  •  (0, 7, 8)

  • We know that the y  and z coordinates on x - axis are 0
    The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are (6, 0, 0)
    Hence, the correct answer is option (a).

MCQ
This question doesn't have a solution currently. Please check again in a few days.
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.5 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.5 | Q 11 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie: 

(–5, –3, –2) 


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of:

 (5, 2, –7) in the xy-plane.


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Write the distance of the point P(3, 4, 5) from z-axis.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×