हिंदी

Verify the Following: (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) Are the Vertices of a Rhombus. - Mathematics

Advertisements
Advertisements

प्रश्न

Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.

उत्तर

Let A(5,\[-\]1, 1) , B(7, \[-\]4, 7) , C(1, \[-\]6, 10), D(\[-\]1, \[-\]3, 4) be the vertices of quadrilateral \[\square ABCD\]

\[AB = \sqrt{\left( 5 - 7 \right)^2 + \left( - 1 + 4 \right)^2 + \left( 1 - 7 \right)^2}\]
\[ = \sqrt{4 + 9 + 36}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[BC = \sqrt{\left( 7 - 1 \right)^2 + \left( - 4 + 6 \right)^2 + \left( 7 - 10 \right)^2}\]
\[ = \sqrt{36 + 4 + 9}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[CD = \sqrt{\left( 1 + 1 \right)^2 + \left( - 6 + 3 \right)^2 + \left( 10 - 4 \right)^2}\]
\[ = \sqrt{4 + 9 + 36}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[DA = \sqrt{\left( - 1 - 5 \right)^2 + \left( - 3 + 1 \right)^2 + \left( 4 - 1 \right)^2}\]
\[ = \sqrt{36 + 4 + 9}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[ \therefore AB = BC = CD = DA\]
Since, all the sides are equal.
Thus, quadrilateral ABCS is a rhombus.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 20.4 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The x-axis and y-axis taken together determine a plane known as_______.


Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

(–5, –3, –2) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Write the distance of the point P(3, 4, 5) from z-axis.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


What is the locus of a point for which y = 0, z = 0?


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×