हिंदी

Show that the Points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) Are the Vertices of a Square. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.

उत्तर

Let A(3,3,3) , B(0,6,3) , C( 1,7,7) and D (4,4,7) are the vertices of quadrilateral \[\square ABCD\]

We have : 

AB =\[\sqrt{\left( 0 - 3 \right)^2 + \left( 6 - 3 \right)^2 + \left( 3 - 3 \right)^2}\] 

\[= \sqrt{\left( - 3 \right)^2 + \left( 3 \right)^2 + \left( 0 \right)^2}\]
\[ = \sqrt{9 + 9 + 0}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

BC =\[\sqrt{\left( 1 - 0 \right)^2 + \left( 7 - 6 \right)^2 + \left( 7 - 3 \right)^2}\]

\[= \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

CD =\[\sqrt{\left( 4 - 1 \right)^2 + \left( 4 - 7 \right)^2 + \left( 7 - 7 \right)^2}\]

\[= \sqrt{\left( 3 \right)^2 + \left( - 3 \right)^2 + \left( 0 \right)^2}\]
\[ = \sqrt{9 + 9 + 0}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

DA =\[\sqrt{\left( 4 - 3 \right)^2 + \left( 4 - 3 \right)^2 + \left( 7 - 3 \right)^2}\]

\[= \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

AB = BC = CD = DA

AC =
AB = BC = CD = DA

AC =\[\sqrt{\left( 1 - 3 \right)^2 + \left( 7 - 3 \right)^2 + \left( 7 - 3 \right)^2}\]
\[= \sqrt{\left( - 2 \right)^2 + \left( 4 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\] 
BD =\[\sqrt{\left( 4 - 0 \right)^2 + \left( 4 - 6 \right)^2 + \left( 7 - 3 \right)^2}\]
\[\]
\[= \sqrt{\left( 4 \right)^2 + \left( - 2 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[\therefore\]AC = BD 
Since, all sides and diagonals of quadrilateral\[\square ABCD\] are equal
Therefore, the points are the vertices of a square.    

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 10 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Coordinate planes divide the space into ______ octants.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie: 

(–5, –4, 7) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×