हिंदी

If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines. - Mathematics

Advertisements
Advertisements

प्रश्न

If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.

योग

उत्तर

The direction cosines of a line which makes an angle of α, β, γ with the axes, are cosα, cosβ, cosγ

Therefore, D.C.’s of the line are cos30°, cos60°, cos90°

i.e., `+-(sqrt(3)/2, 1/2, 0)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Solved Examples [पृष्ठ २२५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 3 | पृष्ठ २२५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×