हिंदी

Find the Coordinates of the Point Which is Equidistant from the Four Points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).

उत्तर

Let P (xyz) be the required point which is equidistant from the points O(0,0,0), A(2,0,0)
B(0,3,0) and C(0,0,8)

Then,
OP = AP 

\[\Rightarrow O P^2 = A P^2\]

\[\therefore x^2 + y^2 + z^2 = \left( x - 2 \right)^2 + y^2 + z^2 \]
\[ \Rightarrow x^2 = \left( x - 2 \right)^2 \]
\[ \Rightarrow x^2 = x^2 - 4x + 4\]
\[ \Rightarrow 4x = 4\]
\[ \Rightarrow x = \frac{4}{4}\]
\[ \therefore x = 1\]
Similarly, we have:
OP = BP
\[\Rightarrow O P^2 = B P^2 \]
\[\therefore x^2 + y^2 + z^2 = x^2 + \left( y - 3 \right)^2 + z^2 \]
\[ \Rightarrow y^2 = y^2 - 6y + 9\]
\[ \Rightarrow 6y = 9\]
\[ \Rightarrow y = \frac{9}{6}\]
\[ \therefore y = \frac{3}{2}\]
Similarly, we also have:

OP CP

\[\Rightarrow O P^2 = C P^2\]

\[\Rightarrow x^2 + y^2 + z^2 = x^2 + y^2 + \left( z - 8 \right)^2 \]
\[ \Rightarrow z^2 = z^2 - 16z + 64\]
\[ \Rightarrow 16z = 64\]
\[ \Rightarrow z = \frac{64}{16}\]
\[ \therefore z = 4\]

Thus, the required point is P \[\left( 1, \frac{3}{2}, 4 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 15 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The x-axis and y-axis taken together determine a plane known as_______.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×