Advertisements
Advertisements
प्रश्न
If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.
उत्तर
Let coordinates of point P be (x, y, z).
Given:
3PA = 2PB
\[\Rightarrow 3\left( \sqrt{\left( x + 2 \right)^2 + \left( y - 2 \right)^2 + \left( z - 3 \right)^2} \right) = 2\left( \sqrt{\left( x - 13 \right)^2 + \left( y + 3 \right)^2 + \left( z - 13 \right)^2} \right)\]
\[ \Rightarrow 3\left( \sqrt{x^2 + 4x + 4 + y^2 - 4y + 4 + z^2 - 6z + 9} \right) = 2\left( \sqrt{x^2 - 26x + 169 + y^2 + 6y + 9 + z^2 - 26z + 169} \right)\]
\[\text{ Squaring both sides }, \]
\[ \Rightarrow 9\left( x^2 + y^2 + z^2 + 4x - 4y - 6z + 17 \right) = 4\left( x^2 + y^2 + z^2 - 26x + 6y - 26z + 347 \right)\]
\[ \Rightarrow 9 x^2 + 9 y^2 + 9 z^2 + 36x - 36y - 54z + 153 = 4 x^2 + 4 y^2 + 4 z^2 - 104x + 24y - 104z + 1388\]
\[ \Rightarrow 5 x^2 + 5 y^2 + 5 z^2 + 140x - 60y + 50z - 1235 = 0\]
\[ \Rightarrow 5\left( x^2 + y^2 + z^2 \right) + 140x - 60y + 50z - 1235 = 0\]
\[ \therefore 5\left( x^2 + y^2 + z^2 \right) + 140x - 60y + 50z - 1235 = 0 \text{ is the locus of the point P } .\]
APPEARS IN
संबंधित प्रश्न
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(7, 4, –3)
Name the octants in which the following points lie:
(2, –5, –7)
Find the image of:
(–2, 3, 4) in the yz-plane.
Find the image of:
(–5, 4, –3) in the xz-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Find the image of:
(–4, 0, 0) in the xy-plane.
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
What is the locus of a point for which y = 0, z = 0?
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.