Advertisements
Advertisements
प्रश्न
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
उत्तर
Let direction vector of three mutually perpendicular lines be
`veca = l_1hati + m_1hatj + n_1hatk`
`vecb = l_2hati + m_2hatj + n_2hatk`
`vecc = l_3hati + m_3hatj + n_3hatk`
Let the direction vector associated with directions cosines l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 be
`vecp = (1_1 + l_2 + l_3)hati + (m_1 + m_2 + m_3)hati + (n_1 + n_2 + n_3)hatk`
As, lines associated with direction vectors a, b and c are mutually perpendicular
We have `veca . vecb` = 0 ......[dot product of two perpendicular vector is 0]
⇒ l1l2 + m1m2 + n1n2 = 0 .....[1]
Similarly, `veca . vecc` = 0
⇒ l1l3 + m1m3 + n1n3 = 0 ......[2]
And `vecb . vecc` = 0
⇒ l2l3 + m2m3 + n2n3 = 0 ......[3]
Now, let x, y, z be the angles made by direction vectors a, b and c respectively with p
Therefore, `cosx = veca. vecp`
⇒ cos x = l1(l1 + l2 + l3) + m1(m1 + m2 + m3) + n1(n1+ n2 + n3)
⇒ cos x = l12 + l1l2 + l1l3 + m12 + m1m2 + m1m3 + n12 + n1n2 + n1n3
⇒ cos x = l12 + m12 + n12 + (l1l2 + m1m2 + n1n2) + (l1l3 + m1m3 + n1n3)
As we know l12 + m12 + n12 = 1 because sum of squares of direction cosines of a line is equal to 1
⇒ cos x = 1 + 0 = 1 ......[From, 1 and 2]
Similarly, cos y = 1 and cos z = 1
⇒ x = y = z = 0
Hence, angle made by vector p, with vectors a, b and c are equal!
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(–5, 0, 3) in the xz-plane.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
What is the locus of a point for which y = 0, z = 0?
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
What is the locus of a point for which y = 0, z = 0?
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The locus represented by xy + yz = 0 is ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.