English

If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, - Mathematics

Advertisements
Advertisements

Question

If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.

Sum

Solution

Let direction vector of three mutually perpendicular lines be

`veca = l_1hati + m_1hatj + n_1hatk`

`vecb = l_2hati + m_2hatj + n_2hatk`

`vecc = l_3hati + m_3hatj + n_3hatk`

Let the direction vector associated with directions cosines l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 be

`vecp = (1_1 + l_2 + l_3)hati + (m_1 + m_2 + m_3)hati + (n_1 + n_2 + n_3)hatk`

As, lines associated with direction vectors a, b and c are mutually perpendicular

We have `veca . vecb`  = 0   ......[dot product of two perpendicular vector is 0]

⇒ l1l2 + m1m2 + n1n2 = 0   .....[1]

Similarly, `veca . vecc` = 0

⇒ l1l3 + m1m3 + n1n3 = 0   ......[2]

And `vecb . vecc` = 0

⇒ l2l3 + m2m3 + n2n3 = 0   ......[3]

Now, let x, y, z be the angles made by direction vectors a, b and c respectively with p

Therefore, `cosx = veca. vecp`

⇒ cos x = l1(l1 + l2 + l3) + m1(m1 + m2 + m3) + n1(n1+ n2 + n3)

⇒ cos x = l12 + l1l2 + l1l3 + m12 + m1m2 + m1m3 + n12 + n1n2 + n1n3

⇒ cos x = l12 + m12 + n12 + (l1l2 + m1m2 + n1n2) + (l1l3 + m1m3 + n1n3)

As we know l12 + m12 + n12 = 1 because sum of squares of direction cosines of a line is equal to 1

⇒ cos x = 1 + 0 = 1   ......[From, 1 and 2]

Similarly, cos y = 1 and cos z = 1

⇒ x = y = z = 0

Hence, angle made by vector p, with vectors a, b and c are equal!

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 237]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 28 | Page 237

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie:

(–5, 4, 3) 


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×