English

The Coordinates of a Point Are (3, –2, 5). Write Down the Coordinates of Seven Points Such that the Absolute Values of Their Coordinates Are the Same as Those of the Coordinates of the Given Point. - Mathematics

Advertisements
Advertisements

Question

The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.

Solution

The seven coordinates are as follows: 

\[\left( - 3, 2, 5 \right)\]
\[\left( 3, 2, - 5 \right)\]
\[\left( - 3, - 2, 5 \right)\]
\[\left( 3, - 2, - 5 \right)\]
\[\left( - 3, 2, - 5 \right)\]
\[\left( - 3, - 2, - 5 \right)\]
\[\left( 3, 2, 5 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 15.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 15.1 | Q 7 | Page 7

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie: 

(–5, –3, –2) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of:

 (5, 2, –7) in the xy-plane.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×