English

Find the foot of perpendicular from the point (2,3,–8) to the line 4-x2=y6=1-z3. Also, find the perpendicular distance from the given point to the line. - Mathematics

Advertisements
Advertisements

Question

Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.

Sum

Solution

Let the given equation be  `(4 - x)/2 = y/6 = (1 - z)/3 = lambda`

This can be written as `(x - 4)/(-2) = y/6 = (z - 1)/(-3) = lambda`  .......(1)

∴ The coordinates of any point on the line is x = 4 − 2λ, y = 6λ, z = 1 − 3λ

Let Q(4 − 2λ, 6λ, 1 − 3λ) be the foot of perpendicular from the point P(2, 3, −8) on line  ......(1)

We know the direction ratios of any line segement PQ is given by (x2 ​− x1​, y2 ​− y1​, z2 ​− z1​)

The direction cosines of PQ is given by

= (−2λ + 4 − 2, 6λ − 3, −3λ + 1 + 8)

= (−2λ + 2, 6λ − 3, −3λ + 9)

Now Q is the foot of the perpendicular of the line (1)

`vec(PQ)` ​is the perpendicular to the line (1)

Hence the sum of the product of this direction ratios is 0

= (−2λ + 2)(−2) + (6λ − 3) . 6 + (−3λ + 9)(−3) = 0

⇒ 4λ − 4 + 36λ − 18 + 9λ − 27 = 0

⇒ 49λ − 49 = 0
∴ λ = 1
Substituting λ = 1 in Q we get
Q(0, 3, 6)
shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 236]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 16 | Page 236

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie: 

(–5, –4, 7) 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


What is the locus of a point for which y = 0, z = 0?


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×