Advertisements
Advertisements
Question
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
Solution
Let:
A = (x1, y1, z1)
B = (x2, y2, z2)
Now, let the line joining A and B be divided by the plane ax + by + cz + d = 0 at point P in the ratio\[\lambda: 1\]
∴ P =\[\left( \frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1}, \frac{\lambda z_2 + z_1}{\lambda + 1} \right)\]
Since P lies on the given plane,
ax + by + cz + d = 0
Thus,
\[ \Rightarrow a\left( \lambda x_2 + x_1 \right) + b\left( \lambda y_2 + y_1 \right) + c\left( \lambda z_2 + z_1 \right) + d\left( \lambda + 1 \right) = 0\]
\[ \Rightarrow \lambda\left( a x_2 + b y_2 + c z_2 + d \right) + \left( a x_1 + b y_1 + c z_1 + d \right) = 0\]
\[ \Rightarrow \lambda\left( a x_2 + b y_2 + c z_2 + d \right) = - \left( a x_1 + b y_1 + c z_1 + d \right)\]
\[ \Rightarrow \lambda = \frac{- \left( a x_1 + b y_1 + c z_1 + d \right)}{\left( a x_2 + b y_2 + c z_2 + d \right)}\]
\[ \Rightarrow \lambda = - \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
\[\text{ Thus, the given plane divides the line joining } \left( x_1 , y_1 , z_1 \right) and \left( x_2 , y_2 , z_2 \right) in the ratio - \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d} .\]
APPEARS IN
RELATED QUESTIONS
The x-axis and y-axis taken together determine a plane known as_______.
Coordinate planes divide the space into ______ octants.
Name the octants in which the following points lie:
(2, –5, –7)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(–4, 0, 0) in the xy-plane.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
Write the distance of the point P (2, 3,5) from the xy-plane.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
What is the locus of a point for which y = 0, z = 0?
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The locus represented by xy + yz = 0 is ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.