Advertisements
Advertisements
Question
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Solution
We know that the y-coordinate of every point on the zx-plane is zero.
So, let P (x, 0, z) be a point on the zx-plane such that PA = PB = PC
Now, PA = PB
\[\Rightarrow \left( x - 1 \right)^2 + \left( 0 + 1 \right)^2 + \left( z - 0 \right)^2 = \left( x - 2 \right)^2 + \left( 0 - 1 \right)^2 + \left( x - 2 \right)^2\]
\[\Rightarrow x^2 + 1 - 2x + 1 + z^2 = x^2 - 4x + 4 + 1 + z^2 - 4z + 4\]
\[ \Rightarrow - 2x + 2 = - 4x - 4z + 9\]
\[ \Rightarrow - 2x + 4x - 4z = 7\]
\[ \Rightarrow 2x - 4z = 7\]
\[ \Rightarrow x - 2z = \frac{7}{2} . . . \left( 1 \right)\]
\[ PB = PC\]
\[ \Rightarrow P B^2 = P C^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( 0 - 1 \right)^2 + \left( z - 2 \right)^2 = \left( x - 3 \right)^2 + \left( 0 - 2 \right)^2 + \left( z + 1 \right)^2 \]
\[ \Rightarrow x^2 - 4x + 4 + 1 + z^2 - 4z + 4 = x^2 - 6x + 9 + 4 + z^2 + 2z + 1\]
\[ \Rightarrow - 4x - 4z + 9 = - 6x + 2z + 14\]
\[ \Rightarrow - 4x + 6x - 4z - 2z = 14 - 9\]
\[ \Rightarrow 2x - 6z = 5\]
\[ \Rightarrow x - 3z = \frac{5}{2}\]
\[ \therefore x = \frac{5}{2} + 3z . . . \left( 2 \right)\]
\[\text{ Putting the value of x in equation } \left( 1 \right): \]
\[ x - 2z = \frac{7}{2}\]
\[ \Rightarrow \frac{5}{2} + 3z - 2z = \frac{7}{2}\]
\[ \Rightarrow \frac{5}{2} + z = \frac{7}{2}\]
\[ \Rightarrow z = \frac{7}{2} - \frac{5}{2}\]
\[ \Rightarrow z = \frac{7 - 5}{2}\]
\[ \Rightarrow z = \frac{2}{2}\]
\[ \therefore z = 1\]
\[\text{ Putting the value of z in equation } \left( 2 \right): \]
\[ x = \frac{5}{2} + 3z\]
\[ \Rightarrow x = \frac{5}{2} + 3\left( 1 \right)\]
\[ \Rightarrow x = \frac{5}{2} + 3\]
\[ \Rightarrow x = \frac{5 + 6}{2}\]
\[ \therefore x = \frac{11}{2}\]
Hence, the required point is \[\left( \frac{11}{2}, 0, 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
Coordinate planes divide the space into ______ octants.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(7, 4, –3)
Find the image of:
(–2, 3, 4) in the yz-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
Write the distance of the point P (2, 3,5) from the xy-plane.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
What is the locus of a point for which y = 0, z = 0?
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.