मराठी

Determine the Points in Zx-plane Are Equidistant from the Points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 

उत्तर

We know that the y-coordinate of every point on the zx-plane is zero.
So, let P (x, 0, z) be a point on the zx-plane such that PA PB = PC

 Now, PA = PB

\[\Rightarrow \left( x - 1 \right)^2 + \left( 0 + 1 \right)^2 + \left( z - 0 \right)^2 = \left( x - 2 \right)^2 + \left( 0 - 1 \right)^2 + \left( x - 2 \right)^2\]

\[\Rightarrow x^2 + 1 - 2x + 1 + z^2 = x^2 - 4x + 4 + 1 + z^2 - 4z + 4\]
\[ \Rightarrow - 2x + 2 = - 4x - 4z + 9\]
\[ \Rightarrow - 2x + 4x - 4z = 7\]
\[ \Rightarrow 2x - 4z = 7\]
\[ \Rightarrow x - 2z = \frac{7}{2} . . . \left( 1 \right)\]
\[ PB = PC\]
\[ \Rightarrow P B^2 = P C^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( 0 - 1 \right)^2 + \left( z - 2 \right)^2 = \left( x - 3 \right)^2 + \left( 0 - 2 \right)^2 + \left( z + 1 \right)^2 \]
\[ \Rightarrow x^2 - 4x + 4 + 1 + z^2 - 4z + 4 = x^2 - 6x + 9 + 4 + z^2 + 2z + 1\]
\[ \Rightarrow - 4x - 4z + 9 = - 6x + 2z + 14\]
\[ \Rightarrow - 4x + 6x - 4z - 2z = 14 - 9\]
\[ \Rightarrow 2x - 6z = 5\]
\[ \Rightarrow x - 3z = \frac{5}{2}\]
\[ \therefore x = \frac{5}{2} + 3z . . . \left( 2 \right)\]
\[\text{ Putting the value of x in equation } \left( 1 \right): \]
\[ x - 2z = \frac{7}{2}\]
\[ \Rightarrow \frac{5}{2} + 3z - 2z = \frac{7}{2}\]
\[ \Rightarrow \frac{5}{2} + z = \frac{7}{2}\]
\[ \Rightarrow z = \frac{7}{2} - \frac{5}{2}\]
\[ \Rightarrow z = \frac{7 - 5}{2}\]
\[ \Rightarrow z = \frac{2}{2}\]
\[ \therefore z = 1\]
\[\text{ Putting the value of z in equation } \left( 2 \right): \]
\[ x = \frac{5}{2} + 3z\]
\[ \Rightarrow x = \frac{5}{2} + 3\left( 1 \right)\]
\[ \Rightarrow x = \frac{5}{2} + 3\]
\[ \Rightarrow x = \frac{5 + 6}{2}\]
\[ \therefore x = \frac{11}{2}\]

Hence, the required point is \[\left( \frac{11}{2}, 0, 1 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 4.3 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Coordinate planes divide the space into ______ octants.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie:

(–5, 4, 3) 


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


What is the locus of a point for which y = 0, z = 0?


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


If the directions cosines of a line are k, k, k, then ______.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×