मराठी

Find the Ratio in Which the Line Segment Joining the Points (2, 4,5) and (3, −5, 4) is Divided by the Yz-plane. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.

उत्तर

Let the yz - plane divide the line sgement joining the points (2, 4,5) and (3, −5, 4) in m : 1.
Now, we know that on yz-plane the coordinate of x is 0.

\[\therefore \frac{m \times 3 + 1 \times 2}{m + 1} = 0\]
\[ \Rightarrow 3m + 2 = 0\]
\[ \Rightarrow m = - \frac{2}{3}\] 

Hence, yz - plane divide the line sgement joining the points (2, 4,5) and (3, −5, 4) in 2 : 3 externally.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.4 | Q 9 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


The x-axis and y-axis taken together determine a plane known as_______.


Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


What is the locus of a point for which y = 0, z = 0?


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


If the directions cosines of a line are k, k, k, then ______.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The locus represented by xy + yz = 0 is ______.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×